

(IEC 62053-11:2003)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ Аппаратура для измерения электрической энергии переменного тока Частные требования

Часть 11 ЭЛЕКТРОМЕХАНИЧЕСКИЕ СЧЕТЧИКИ АКТИВНОЙ ЭНЕРГИИ КЛАССОВ ТОЧНОСТИ 0,5; 1 и 2

Electricity metering equipment (a.c). Particular requirements. Part 11. Electromechanical meters for active energy (classes 0,5; 1 and 2)

MKC 17.220

Дата введения 2014-01-01

Предисловие

Цели, основные принципы и порядок проведения работ по межгосударственной стандартизации установлены <u>ГОСТ 1.0-92</u> "Межгосударственная система стандартизации. Основные положения" и <u>ГОСТ 1.2-2009</u> "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены"

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием "Всероссийский научно-исследовательский институт стандартизации и сертификации в машиностроении" (ВНИИНМАШ)
- 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии (Росстандарт)
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 15 ноября 2012 г. N 42)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97	Код страны по <u>МК</u> (ИСО 3166) 004-97	Сокращенное наименование национального органа по стандартизации
Беларусь	BY	Госстандарт Республики Беларусь
Казахстан	KZ	Госстандарт Республики Казахстан
Киргизия	KG	Кыргызстандарт
Российская Федерация	RU	Росстандарт
Таджикистан	TJ	Таджикстандарт
Узбекистан	UZ	Узстандарт

(<u>Поправка</u>. ИУС N 6-2015).

4 Приказом Федерального агентства по техническому регулированию и метрологии от 22 ноября 2012 г. N 1036-ст межгосударственный стандарт ГОСТ 31819.11-2012 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2014 г.

5 Настоящий стандарт модифицирован по отношению к международному стандарту IEC 62053-11:2003* Electricity metering equipment (a.c.) - Particular requirements - Part 11: Electromechanical meters for active energy (classes 0,5, 1 and 2) [Аппаратура для измерения электрической энергии (переменный ток). Частные требования. Часть 11. Электромеханические счетчики активной энергии (классы точности 0,5, 1 и 2)]. При этом дополнительные и измененные положения, учитывающие потребности национальной экономики указанных выше государств, выделены в тексте курсивом**.

Международный стандарт разработан Международной электротехнической комиссией (IEC).

Перевод с английского языка (en).

Наименование настоящего стандарта изменено относительно наименования международного стандарта для приведения в соответствие с ГОСТ 1.5-2001 (пункт 3.6).

Сведения о соответствии межгосударственных стандартов ссылочным международным стандартам приведены в дополнительном приложении ДА.

Степень соответствия - модифицированная (MOD).

^{*} Доступ к международным и зарубежным документам, упомянутым здесь и далее по тексту, можно получить перейдя по ссылке на сайт http://shop.cntd.ru;

^{**} В бумажном оригинале обозначения и номера стандартов и нормативных документов в разделе "Предисловие" и таблице ДА.1 приложения ДА приводятся обычным шрифтом, остальные по тексту документа выделены курсивом. - Примечание изготовителя базы данных.

Стандарт подготовлен на основе применения ГОСТ Р 52321-2005

6 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

ВНЕСЕНА поправка, опубликованная в ИУС N 6, 2015 год

Поправка внесена изготовителем базы данных

1 Область применения

Настоящий стандарт распространяется на электромеханические (индукционные) счетчики ваттчасов (далее - счетчики) классов точности 0,5; 1 и 2 для измерения электрической активной энергии в сетях переменного тока частотой 50 или 60 Гц и устанавливает требования к изготовлению и испытаниям счетчиков.

Стандарт распространяется на счетчики, применяемые внутри помещения, и счетчики для наружной установки, содержащие измерительный элемент и счетный(е) механизм(ы), заключенные вместе в корпус счетчика. Он также распространяется на индикатор(ы) функционирования и испытательный(е) выход(ы). Если счетчик имеет измерительный элемент для энергии более чем одного вида (счетчики на энергию разных видов) либо если в корпус счетчика заключены другие функциональные элементы, такие как показатели максимума, электронные регистраторы тарифов, переключатели по времени, приемники дистанционного управления, интерфейсы передачи данных и т.п., то тогда применяют соответствующие стандарты или нормативные документы государств, упомянутых в предисловии как проголосовавшие за принятие настоящего стандарта, на эти элементы.

Стандарт не распространяется на:

- a) счетчики ватт-часов напряжением свыше 600 В (линейное напряжение для многофазных счетчиков);
- б) переносные счетчики;

- в) интерфейсы к счетному механизму счетчика;
- г) эталонные счетчики;
- д) счетчики с предварительной оплатой;
- е) счетчики с датчиком импульсов.

Приемочные испытания проводят по <u>ГОСТ 25990</u>.

Требования к надежности установлены в [1] и [2].

Требования к надежности и методика испытаний счетчиков на надежность должны быть установлены в нормативных документах на счетчики конкретного типа государств, упомянутых в предисловии как проголосовавшие за принятие настоящего стандарта. Средняя наработка до отказа должна быть не менее межповерочного интервала.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты*:

<u>ГОСТ 15150-69</u> Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды

<u>ГОСТ 15151-69</u> Машины, приборы и другие технические изделия для районов с тропическим климатом. Общие технические условия

<u>ГОСТ 25990-83</u> Счетчики электрические активной энергии класса точности 2,0. Приемочный контроль

<u>ГОСТ 31818.11-2012</u> (IEC 62052-11:2003) Аппаратура для измерения электрической энергии переменного тока. Общие требования. Испытания и условия испытаний. Часть 11. Счетчики электрической энергии

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному справочному указателю "Национальные стандарты",

^{*} Таблицу соответствия национальных стандартов международным см. по <u>ссылке</u>. - Примечание изготовителя базы данных.

который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины и определения по ГОСТ 31818.11.

4 Стандартные значения электрических величин

По ГОСТ 31818.11.

5 Механические требования

Дополнительно к механическим требованиям по <u>ГОСТ 31818.11</u> счетчики должны удовлетворять следующим требованиям.

5.1 Общие требования

Корпус счетчика должен изготавливаться таким образом, чтобы при его установке, согласно инструкциям изготовителя, обеспечивалось отклонение его от вертикального положения не более чем на 0,5° по всем направлениям (см. таблицу 11, сноска 2).

5.2 Счетный механизм

Счетный механизм может быть барабанного или стрелочного типа.

В счетных механизмах барабанного типа в непосредственной близости от блока барабанов должна быть нанесена размерность единицы измерения, в которой учитывают энергию. В счетных механизмах этого типа только последний барабан, т.е. расположенный с правого края, может вращаться непрерывно.

Изменение показаний счетного механизма на одну цифру последнего барабана (указателя) должно продолжаться не более 15 мин при максимальном токе, номинальном напряжении и коэффициенте мощности, равном 1.

В счетных механизмах стрелочного типа единица измерения, в которой счетный механизм регистрирует показания, должна быть нанесена вблизи циферблата в виде: 1 кВт·ч/дел., либо 1 МВт·ч/дел., а десятичные множители должны быть нанесены вблизи других циферблатов. Например, в счетчике, регистрирующем показания в виде киловатт-часов, циферблат должен маркироваться так: 1 кВт·ч/дел., а вблизи других циферблатов слева от циферблата с единицами измерений должно быть нанесено: 10-100-1000 и т.д.

5.3 Направление вращения и маркировка ротора

Диск ротора, если смотреть с лицевой стороны счетчика, должен вращаться слева направо, при этом регистрируемая энергия должна возрастать. Направление вращения должно быть ясно отмечено видимой стрелкой *на щитке счетного механизма*.

Ребро и (или) верхняя поверхность диска должны иметь ясно видимую метку для облегчения подсчета числа оборотов. Дополнительные метки могут быть нанесены для стробоскопических или иных испытаний, но они должны быть размещены таким образом, чтобы не препятствовать использованию основной видимой метки для фотоэлектрического считывания числа оборотов.

5.4 Маркировка счетчика

Маркировка счетчиков - по <u>ГОСТ 31818.11</u>.

6 Климатические условия

Климатические условия - по ГОСТ 31818.11.

В зависимости от условий эксплуатации и места размещения счетчики должны быть изготовлены следующих исполнений и категорий размещения по <u>ГОСТ 15150</u>.

- а) Счетчики класса точности 2:
- 1) исполнение УХЛ, категория 4, но для работы при температуре окружающей среды от 0 °C до 40 °C и относительной влажности воздуха не более 80% при температуре 25 °C, а для однофазных счетчиков при температуре от минус 20 °C до плюс 55 °C;
- 2) исполнение T, категория 3, а для однофазных счетчиков при температуре от минус 20° C до плюс 55 °C:
- б) Счетчики классов точности 0,5 и 1:
- 1) исполнение УХЛ, категория 4.2;
- 2) исполнение T, категория 4.1, но для работы при температуре от 10 °C до 35 °C и относительной влажности воздуха не более 98% при температуре 35 °C.

7 Электрические требования

Дополнительно к <u>ГОСТ 31818.11</u> счетчики должны удовлетворять следующим требованиям.

7.1 Потребляемая мощность

Потребляемая мощность в цепях напряжения и тока должна быть определена любым соответствующим методом в нормальных условиях, приведенных в 8.5. Суммарная максимальная погрешность измерений потребляемой мощности не должна превышать 5%.

7.1.1 Цепи напряжения

Активная и полная потребляемая мощности в каждой цепи напряжения счетчика при номинальном напряжении, нормальной температуре и номинальной частоте не должны превышать значений, приведенных в таблице 1.

Таблица 1 - Потребляемая мощность в цепях напряжения

Счетчик	Мощность для сче	етчиков классов точности
	0,5 и 1	2
Однофазный	3,0 Вт и 12,0 В·A	2,0 Вт и 10,0 В·А; <i>1,3 Вт и 4,5 В·А, 5,5 В·А</i>
Многофазный	3,0 Вт и 12,0 В·А; 2,7 Вт и 8,0 В·А	2,0 Вт и 10,0 В·А; <i>1,5 Вт и 6,0 В·А</i>

По согласованию с потребителем.

Примечание - Для согласования трансформаторов напряжения со счетчиками изготовитель должен указать, является ли нагрузка индуктивной или емкостной (только для трансформаторных счетчиков).

7.1.2 Цепи тока

Полная мощность, потребляемая каждой цепью тока счетчика непосредственно включения при базовом токе, номинальной частоте и нормальной температуре, не должна превышать значений, приведенных в таблице 2.

Таблица 2 - Потребляемая мощность в цепях тока

Счетчик	Базовый ток, А	Мощность, В А,	для счетчиков классо	ов точности
		0,5	1	2
Однофазный	30	6,0	4,0	2,5; 0,3
	30	10,0	6,0	4,0
Многофазный	30	6,0; 4,5	4,0; 2,5	2,5; 0,6
	30	10,0	6,0	4,0; 2,5

Примечания

- 1 Номинальный вторичный ток это значение вторичного тока трансформатора тока, указанное на трансформаторе. Стандартные значения максимального вторичного тока равны 120% (125%), 150% и 200% номинального вторичного тока.
- 2 Для согласования трансформаторов тока со счетчиками изготовитель должен указать, является ли нагрузка индуктивной или емкостной (для трансформаторных счетчиков).

Полная мощность, потребляемая каждой цепью тока счетчика, включаемого через трансформатор тока, не должна превышать значений, приведенных в таблице 2, при токе, равном номинальному вторичному току соответствующего трансформатора, при нормальной температуре и номинальной частоте счетчика.

7.2 Влияние кратковременных перегрузок по току

Кратковременные перегрузки по току не должны повреждать счетчик. Счетчик должен нормально функционировать при возвращении к своим начальным рабочим условиям, а изменение погрешности не должно превышать значений, указанных в таблице 3. Счетчик должен быть выдержан до достижения первоначальной температуры (около 1 ч) при наличии питания на цепи(ях) напряжения.

Таблица 3 - Изменения погрешности, вызываемые кратковременными перегрузками током

Включение счетчика	Значение	Коэффициент	Предел изме	нения погрешн	ости, %, для
	тока	мощности	счетчи	ков классов то	чности
			0,5	1	2
Непосредственное		1	ı	1	,5
Через трансформатор тока			0,3	0,5	1,0

Испытательная цепь должна быть практически безындукционной. Испытание должно быть проведено для многофазных счетчиков поочередно для каждой фазы.

а) Счетчик непосредственного включения

Счетчик должен выдерживать импульс тока, пиковое значение которого 50 с допустимым отклонением от 0% до минус 10% (но не более 7000 A) и который сохраняет значение 25 при допустимом отклонении от 0% до минус 10% (но не более 3500 A) в течение 1 мс.

Примечания

- 1 Импульс тока может быть получен, например, путем разряда конденсатора или тиристорного управления сетью питания.
- 2 это среднеквадратическое значение максимального тока счетчика.
- b) Счетчик, предназначенный для включения через трансформатор тока

Счетчик должен выдерживать в течение 0,5 с ток, превышающий в 20 раз при допустимом отклонении от 0% до минус 10%.

Примечание - Это требование не относится к счетчикам, имеющим коммутирующие контакты в цепях тока. В этом случае следует учитывать требования соответствующего стандарта.

7.3 Влияние самонагрева

Изменение погрешности, вызываемое самонагревом при токе , не должно превышать значений, приведенных в таблице 4.

Таблица 4 - Изменение погрешности, вызываемое самонагревом

Коэффициент мощности	Предел изменения	я погрешности, %, дл	я счетчиков классов
	точности 0,5 1 2 0,5 0.7 1.0		
	0,5	1	2
1,0	0,5	0,7	1,0
0,5 (при индуктивной нагрузке)	0,7	1,0	1,5

Испытание должно быть проведено следующим образом: цепи напряжения подключают к сети номинальным напряжением на время не менее 4 ч для счетчиков класса точности 0,5; 2 ч - для счетчиков класса точности 1 и 1 ч - для счетчиков класса точности 2, при обесточенных цепях тока, а затем цепи тока нагружают максимальным током. Погрешность счетчика должна быть измерена при коэффициенте мощности, равном 1,0, сразу после приложения тока и затем через промежутки времени, достаточно короткие для точного построения кривой изменения погрешности в зависимости от времени. Испытание следует проводить в течение, по крайней мере, 1 ч и до тех пор, пока изменение погрешности в течение 20 мин не будет превышать 0,2%.

Затем такое же испытание должно быть проведено при коэффициенте мощности, равном 0,5 (при индуктивной нагрузке).

Кабель, используемый для подачи электропитания к счетчикам, должен иметь длину примерно 1 м и такое поперечное сечение, чтобы плотность тока была в диапазоне 3,2-4,0 А/мм .

7.4 Испытание напряжением переменного тока

Испытание напряжением переменного тока следует проводить в соответствии с таблицей 5.

Таблица 5 - Испытания напряжением переменного тока

Испытание	Среднеквадратическое значение испытательного	Точка приложения испытательного напряжения
A	напряжения 2 кВ (перечисления a)-d))	Испытания, которые могут проводиться при снятых кожухе и крышке зажимов:
		- с одной стороны, между стойкой и,
		- с другой стороны:
		а) каждой цепью тока, которая при нормальной эксплуатации отделена и соответствующим образом
		изолирована от других цепей ;
		b) каждой цепью напряжения или набором цепей напряжения, имеющих общую точку, которая при нормальной работе отделена и соответствующим образом изолирована от других цепей ;
		с) каждой вспомогательной цепью или набором вспомогательных цепей, имеющих общую точку, номинальное напряжение которых выше 40 В;
		d) каждым узлом обмоток тока - напряжения одного и того же вращающего элемента, которые при нормальной эксплуатации соединены вместе, но разделены и
	500 В (перечисление е))	соответственно изолированы от других цепей ; е) каждой вспомогательной цепью, номинальное напряжение которой равно или ниже 40 В
Б	600 В или удвоенное напряжение, приложенное к виткам напряжения при нормальных условиях, если оно выше 300 В (большее значение)	Испытания, которые могут быть выполнены со снятой крышкой зажимов, но при ее наличии, если она металлическая, между цепью тока и цепью напряжения каждого вращающего элемента, в условиях эксплуатации соединенных между собой, причем это соединение временно размыкают при испытаниях
В	2 κB	Испытания следует проводить при закрытом корпусе счетчика, с установленным на место кожухом и крышкой зажимов и между - с одной стороны - всеми цепями тока и напряжения, а также всеми вспомогательными цепями номинальным напряжением больше 40 В, соединенными вместе, а с другой стороны - с "землей" Испытания следует проводить при закрытом корпусе

I		,
		счетчика, а испытания с целью утверждения типа, кроме того, следует проводить с установленной крышкой
		зажимов между - с одной стороны - всеми цепями тока и
		напряжения, а также всеми вспомогательными цепями с
		номинальным напряжением более 40 В, соединенными
		вместе, а с другой стороны - с "землей"
Γ		Дополнительные испытания для изоляции счетчиков в
		кожухах класса защиты II:
	4 кВ (перечисление а))	а) между - с одной стороны - всеми цепями тока и
		напряжения, а также вспомогательными цепями, чье
		номинальное напряжение больше 40 В, соединенными
		вместе, а с другой стороны - с "землей";
	2 кВ (перечисление b))	b) между стойкой и "землей";
		с) визуальный осмотр на соответствие требованиям
		5.7 <u>FOCT 31818.11;</u>
	40 В (перечисление d))	d) между - с одной стороны - всеми проводящими частями
		внутри корпуса счетчика, соединенными вместе, а с
		другой стороны - всеми проводящими частями за
		пределами корпуса счетчика, которые доступны с
		помощью испытательного пальца, соединенными вместе
-	1	L

Разрыва соединения между обмотками тока и напряжения обычно недостаточно, чтобы обеспечить необходимую изоляцию, которая может выдержать испытательное напряжение 2 кВ.

Испытание A (точка приложения напряжения согласно перечислениям a), b) обычно применимо к счетчикам, работающим от измерительных трансформаторов, а также к определенным специальным счетчикам, имеющим раздельные витки тока и напряжения.

Цепи, которые были подвержены испытанию A (точка приложения напряжения согласно перечислениям a), b), не подлежат испытанию по перечислению е). Когда цепи напряжения многофазного счетчика при нормальной работе имеют общую точку, последняя должна сохраняться для испытания, и в этом случае все цепи вращающих элементов подвергают одному испытанию.

Это не является испытанием диэлектрической прочности, но является методом подтверждения того, что изоляционные промежутки достаточны, когда зажимная плата (*клеммная колодка*) открыта.

Испытание Γ (точка приложения напряжения согласно перечислению d)) не требуется, если испытание по перечислению c) не вызывает сомнений.

Испытательное напряжение должно быть практически синусоидальным частотой переменного тока 45-65 Гц. Оно должно быть приложено в течение 1 мин. Мощность источника питания должна быть не менее 500 В·А.

При повышении испытательного напряжения на 25% допускается проверку электрической прочности изоляции проводить в течение 1 с.

Во время испытаний относительно "земли" вспомогательные цепи номинальным напряжением 40 В или ниже должны быть соединены с "землей".

Во время испытания не должно быть искрения, пробивного разряда или пробоя.

8 Требования к точности

Испытания и условия испытаний приведены в ГОСТ 31818.11.

8.1 Пределы погрешности, вызываемой изменением тока

В нормальных условиях, приведенных в 8.5, *допускаемые основные* погрешности не должны превышать пределов для соответствующего класса точности, установленных в таблицах 6 и 7. Пределы *допускаемой основной* погрешности для счетчиков класса точности 0,5 действительны только для трансформаторных счетчиков.

Таблица 6 - Пределы *допускаемой основной* погрешности для одно- и многофазных счетчиков с симметричными нагрузками

Зна	чение тока	Коэффициент мощности	основног	ел <i>допуска</i> й погрешно етчиков кл точности	ости, %,
Счетчики с непосредственным включением	Счетчики, включаемые через трансформатор		0,5	1	2
$0.05I_{6} \le I < 0.10I_{6}$	$0.02I_{\text{HOM}} \le I < 0.05I_{\text{HOM}}$ $0.05I_{\text{HOM}} \le I < 0.10I_{\text{HOM}}$	1,00	±1,0	±1,5	±2,5
$0.10I_{6} \leq I < I_{Make}$	$0.05I_{\text{HOM}} \le I \le I_{\text{Marc}}$ $0.10I_{\text{HOM}} \le I \le I_{\text{Marc}}$	1,00	±0,5	±1,0	±2,0

				pro	sector.com
$0,10I_6 \le I \le 0,20I_6$	$0.05I_{\text{hom}} \le I < 0.10I_{\text{hom}}$	0,50 (при индуктивной	±1,3	±1,5	±2,5
	$0.10I_{\mathrm{HOM}} \leq I \leq 0.20I_{\mathrm{HOM}}$	нагрузке)			
		0,80 (при			-
		емкостной			
		нагрузке)			
$0,20I_{6} \le I \le I_{\text{maxc}}$	$0.10I_{\text{HOM}} \le I \le I_{\text{Make}}$	0,50 (при	±0,8	±1,0	±2,0
		индуктивной			
	$0.02I_{\texttt{HOM}} \leq I \leq I_{\texttt{MakC}}$	нагрузке)			
		0,80 (при			-
		емкостной			
		нагрузке)			
По требо	ованию заказчика:				
$0,20I_{6}\leq I\leq I_{6}$	$0.10I_{\text{HOM}} \le I \le I_{\text{HOM}}$	0,25 (при	±2,5	±3,5	-
		индуктивной			
	$0,20I_{\mathtt{HOM}} \leq I \leq I_{\mathtt{HOM}}$	нагрузке)			
		0,50 (при	±1,5	±2,5	-
		емкостной			
		нагрузке)			

Таблица 7 - Пределы *допускаемой основной* погрешности для многофазных счетчиков с однофазной нагрузкой при симметрии многофазных напряжений, приложенных к цепям напряжения

Значение тока		Коэффициент мощности	Предел допускаемой основной погрешности, %, для счетчиков классов точности		
Счетчики с непосредственным включением	Счетчики, включаемые через трансформатор		0,5	1	2
$0.2I_6 \le I \le I_6$	$0.1I_{\text{HOM}} \le I \le I_{\text{HOM}}$ $0.2I_{\text{HOM}} \le I \le I_{\text{HOM}}$	1,0	±1,5	±2,0	±3,0
	0,2 <i>I</i> _{ном}	0,5 (при индуктивной нагрузке)			-
					±3,0
$I_{6} \leq I \leq I_{Maxc}$	$I_{\text{HOM}} \leq I \leq I_{\text{Marc}}$	1,0	-	-	±4,0

Разность между значением погрешности при однофазной нагрузке счетчика и значением погрешности при симметричной многофазной нагрузке при базовом токе и коэффициенте

мощности, равном 1, для счетчиков с непосредственным включением и соответственно при номинальном токе и коэффициенте мощности, равном 1, для счетчиков, включаемых через трансформатор, не должна превышать 1%; 1,5% и 2,5% для счетчиков классов точности 0,5; 1 и 2 соответственно.

Примечание - При испытании на соответствие требованиям таблицы 7 испытательный ток следует подавать в цепь тока каждого измерительного элемента поочередно.

8.2 Пределы погрешности, вызываемой другими влияющими величинами

Дополнительная погрешность, вызываемая изменением влияющих величин по отношению к нормальным условиям, приведенным в 8.5, не должна превышать пределов для соответствующего класса точности, установленных в таблице 8. Пределы погрешности для счетчиков класса 0,5 действительны только для трансформаторных счетчиков.

Таблица 8 - Влияющие величины

Влияющая	Ток при симметрич	ной нагрузке (если не	Коэффициент	Клас	Класс точности	
величина	оговор	ено особо)	мощности	счетчика		a
	Счетчики с	Счетчики, включаемые		0,5	1	2
	непосредственным	через трансформатор				
	включением					
Изменение				C	Средний	Í
температуры				темп	ератур	ный
окружающей				коэфф	ициент	r, %/K
среды	0.0000000000000000000000000000000000000	May at Milata				-
	$0.10I_6 \le I \le I_{\text{marc}}$	$0.05I_{\text{HOM}} \le I \le I_{\text{Marc}}$	1,0	0,03	0,05	0,10
		040000000000000000000000000000000000000				
		$O, IOI_{\text{HOM}} \le I \le I_{\text{Marc}}$				
	$0,20I_{6} \leq I \leq I_{\text{marc}}$	$0.10I_{\text{HOM}} \le I \le I_{\text{Marc}}$	0,5 (при	0,05	0,07	0,15
	100000000000000000000000000000000000000	100 000000 V 1000000	индуктивной			
		$0.20I_{\mathtt{HOM}} \leq I \leq I_{\mathtt{Marc}}$	нагрузке)			
Изменение				П	Іредель	I
напряжения				допо.	лнител	ьной
электропитания				погре	ешност	и, %:
±10%						-
	0,10 <i>I</i> ₆	0,10 <i>I</i> _{ном}	1,0	0,80	1,00	1,50
	0,50 <i>I</i> _{maxc}	0,50 <i>I</i> _{maxc}	1,0	0,50	0,70	1,00

			•		profsec	tor.com
	0,50 <i>I</i> _{макс}	0,50 <i>I</i> _{maxc}	0,5 (при индуктивной нагрузке)	0,70	1,00	1,50
Изменение частоты электропитания: ±2%;	0,10 <i>I</i> ₆	0,101 _{ном}	1,0	0,70	1,00	1,50
±5%	0,50 <i>I</i> _{marc}	0,50 <i>I</i> _{marc}	1,0	0,60	0,80	1,30
	$0,50I_{ m maxc}$	0,50 <i>I</i> _{maxc}	0,5 (при индуктивной нагрузке)	0,80	1,00	1,50
Обратный порядок следования фаз	$0,50I_6 \le I \le I_{\text{Marc}}$	$0.50I_{\text{HOM}} \leq I \leq I_{\text{Marc}}$	1,0		1,50	
	0,50 <i>I</i> _{б (однофазная нагрузка)}	0,50 <i>I</i> _{ном} (однофазная нагрузка)			2,00	
Форма кривой: 10% тока 3-й гармоники от тока основной частоты			1,0	0,50	0,60	0,80
Магнитная индукция внешнего происхождения			1,0	1,50	2,00	3,00
0,5 мТл	0.057	0.007				
Работа вспомогательных	0,05 <i>I</i> ₆	0,02 <i>I</i> _{ном}	1,0	0,30	0,50	1,00
частей Механическая нагрузка одно-	0,05 <i>I</i> ₆	0,05I _{ном} 0,02I _{ном}	1,0	0,80	1,50	2,00
или многотарифным счетным		0,051 _{ном}				
механизмом Отклонение от вертикали 3°	0,05 <i>I</i> ₆	0,02 <i>I</i> _{HOM}	1,0	1,50	2,00	3,00
вертикали з		0,05I _{HOM}				
	И	И		0,30	0,40	0,50

Средний температурный коэффициент следует определять для всего рабочего диапазона. Рабочий температурный диапазон следует разделить на поддиапазоны по 20 К. Затем средний температурный коэффициент следует определить путем проведения измерений для этих поддиапазонов: 10 К выше и 10 К

ниже середины поддиапазона. Во время проведения испытания температура ни в коем случае не должна выходить за пределы указанного диапазона.

Для диапазонов напряжения от минус 20% до минус 10% и от плюс 10% до плюс 15% пределы дополнительной погрешности (выраженной в процентах) могут в три раза превышать приведенные в таблице. При напряжении ниже 0,8 погрешность счетчика может меняться в пределах от плюс 10% до минус 100%.

Коэффициент искажения формы кривой напряжения должен быть менее 1%. Дополнительную погрешность (выраженную в процентах) следует измерять при наиболее неблагоприятных условиях смещения фазы третьей гармоники в токе по сравнению с основным током.

Магнитная индукция внешнего происхождения 0,5 мТл, создаваемая током частоты, одинаковой с частотой подаваемого на счетчик напражения, и при наиболее неблагоприятных фазе и направлении не должна вызывать изменения погрешности счетчика, превышающей установленные в таблице.

Магнитная индукция может быть создана путем помещения счетчика в центр катушки средним диаметром 1 м с прямоугольным поперечным сечением, небольшой радиальной толщиной по сравнению с диаметром и имеющей 400 ампер-витков.

Вспомогательную часть внутри корпуса счетчика (например, электромагнит многотарифного счетного механизма) включают под напряжением прерывисто.

Желательно, чтобы вспомогательные части маркировались для обеспечения правильного подключения счетчика. Если эти подключения выполнены с помощью соединителей (разъемов), то должна быть предусмотрена защита от возможности неправильного подключения счетчика.

Однако при отсутствии этих маркировок или фиксированных соединений отклонения погрешностей не должны превышать указанных в таблице, если счетчик испытан с соединениями, создающими наиболее неблагоприятное состояние.

Данный эффект компенсируется при регулировке счетчика.

Изменение погрешности следует определять при подключенном и отключенном счетном механизме.

Проверку изменения, вызываемого влияющими величинами, следует проводить независимо от всех других влияющих величин, находящихся в нормальных условиях, согласно таблице 11.

8.3 Проверка отсутствия самохода и стартового тока

Для этих испытаний условия испытаний и значения влияющих величин должны соответствовать 8.5 со следующими дополнениями.

8.3.1 Проверка без тока нагрузки (отсутствие самохода)

Ротор счетчика не должен совершать более одного полного оборота при отсутствии тока в цепи тока (цепи тока должны быть разомкнуты) и при любом напряжении от 80% до 110% номинального значения.

Отсутствие самохода проверяют при вращении только одного барабана счетного механизма барабанного типа.

По требованию заказчика при остановке ротора метка диска должна быть видна в прорези щитка.

Для счетчиков, конструкцией антисамоходного устройства которых обеспечивается положение метки диска в прорези щитка, допускается проверку самохода при приемосдаточных испытаниях проводить следующим образом. Диск следует установить так, чтобы метка диска расположилась в прорези симметрично относительно краев прорези на щитке. На счетчик подают напряжение, равное 110% и 80% номинального, и убеждаются, что в течение 10 мин края метки диска не сместились за края прорези на щитке.

8.3.2 Проверка стартового тока (чувствительности)

Ротор счетчика должен начать и продолжать непрерывно вращаться при стартовом токе (а в случае многофазных счетчиков - с симметричной нагрузкой), не превышающем значений, указанных в таблице 9.

Таблица 9 - Стартовые токи

Включение счетчика	Стартовый ток для счетчиков классов точности			Коэффициент мощности
	0,5	1	2	
Непосредственное	-	0,004 <i>I</i> ₆	0,005 <i>I</i> ₆	1
Через трансформаторы тока	0,002 <i>I</i> _{ном}	0,002 <i>I</i> _{ном}	0,003 <i>I</i> _{ном}	
		0,004I _{ном}	0,005I _{ном}	

Необходимо удостовериться, что ротор счетчика совершает, по крайней мере, один оборот. Для

счетчика с барабанным счетным механизмом испытание следует проводить не более чем при двух вращающихся барабанах.

Проверку чувствительности следует проводить при номинальном напряжении, коэффициенте мощности, равном 1, и соответствующем токе.

Ротор счетчика должен начать вращение и сделать не менее одного оборота за время, не превышающее , при этом для счетчика со счетным механизмом барабанного типа допускается вращение не более двух барабанов (переход с показания "9" на "0" только барабана младшего разряда). Погрешность определения мощности не должна превышать ±10%. Время , мин, следует определять по формуле

$$T = \frac{300}{m n_{\text{HOM}}}, (1)$$

где - частота вращения ротора при номинальной нагрузке, мин ;

- чувствительность, % номинального тока.

8.4 Постоянная счетчика

Постоянная счетчика должна подтверждать правильность соотношения между числом оборотов ротора счетчика и показаниями счетного механизма.

Допускается постоянную счетчика проверять путем счета числа оборотов ротора за время изменения показаний счетного механизма на один знак низшего разряда.

8.5 Условия проверки точности

Проверку точности проводят при соблюдении следующих условий.

- а) Счетчик должен быть испытан с установленным кожухом.
- b) До начала испытаний (*кроме приемосдаточных*) цепи напряжения счетчика должны находиться под напряжением в течение времени, достаточного для достижения тепловой стабильности, но не менее 4, 2 и 1 ч для счетчиков классов точности 0,5; 1 и 2 соответственно.

При этом измеряемые токи следует устанавливать в порядке возрастания или уменьшения

величины; цепи тока должны находиться при каждом значении тока в течение времени, достаточного для достижения тепловой стабильности и установившейся частоты вращения ротора.

Перед определением погрешностей в целях прогрева измерительного механизма счетчик должен находиться (не менее 15 мин) под номинальным напряжением и номинальным током при коэффициенте мощности, равном 1. При этом допускается проверять правильность работы счетного механизма.

- с) Дополнительно для многофазных счетчиков:
- 1) порядок следования фаз должен соответствовать указанному на схеме подключений счетчика;
- 2) напряжения и токи должны быть практически симметричными в соответствии с требованиями таблицы 10.

Таблица 10 - Требования к симметрии токов и напряжений

Многофазные счетчики	Допускаемое	отклонение д	ля счетчиков
	КЛ	ассов точност	ги
	0,5	1	2
Напряжения между фазой и нейтралью, а также между любыми	+0,5%	+1	1%
двумя фазами относительно соответствующего среднего			
значения, не более			
Токи в токовых цепях относительно среднего значения, не	+1%	+2	2%
более			
Сдвиг фаз для каждого тока от соответствующих напряжений		2°	
между фазой и нейтралью, независимо от фазового угла,			
относительно друг друга, не более			

d) Нормальные условия указаны в таблице 11.

Таблица 11 - Нормальные условия

Влияющая величина	Нормальное условие	Допускаемое отклонение для счетчиков		
		классов точности		
		0,5	1	2
Температура окружающей	Нормальная температура			
среды	или, если она не			
	установлена:			
	23 °C	+ 1 °C	+2 °C	+2 °C

				proisector.com
	20 °C	±1 °C	±3 °C	±3 °C
Напряжение электропитания	Номинальное напряжение	±0,5%	±1,0%	±1,0%
Частота электропитания	Номинальная частота	±0,2%	±0,3%	±0,5%
		±0,5%	±0,5%	
Порядок следования фаз	L1-L2-L3	-	-	-
Несимметрия напряжения	Все фазы соединены	-	-	-
Форма кривой	Синусоидальные	Коэффи	циент искажени	я менее:
	напряжения и токи			
		2%	2%	3%
			5%	5%
Магнитная индукция	Магнитная индукция, равная	Индукци	я, создающая из	вменение
внешнего происхождения	нулю	погр	ешности, не бол	iee
при номинальной частоте		•	,	
		±0,1%	±0,2%	±0,3%
Работа вспомогательных	Отсутствие работы	-	-	-
частей	вспомогательных частей			
Рабочее положение	Вертикальное	±0,5°	±0,5°	±0,5°
			±1,0°	±1,0°

Если испытания проводят при температуре, отличающейся от нормальной температуры с учетом допускаемых отклонений, то результаты должны быть скорректированы введением соответствующего температурного коэффициента счетчика.

Вертикальное рабочее положение - в соответствии с 5.1.

Конструкция и исполнение счетчика должны быть такими, чтобы обеспечивалось точное вертикальное положение (в двух перпендикулярных вертикальных плоскостях "лицевая-задняя" и "левая сторона-правая сторона"), когда:

- цоколь счетчика опирается на вертикальную стену;
- опорная грань (например, нижний край зажимной платы) или контрольная линия, нанесенная на корпус счетчика, горизонтальны.

Испытание состоит:

а) для однофазного счетчика - из определения погрешностей сначала на счетчике, нормально присоединенном к сети, а затем при изменении на обратное присоединение цепей тока, а также цепей напряжения. Половина разности между двумя значениями погрешности представляет собой значение изменения погрешности. Так как фаза внешнего поля неизвестна, испытание следует проводить при токе, равном , соответственно ${}^{0,05I}_{\text{ном}}$ (${}^{0,10I}_{\text{ном}}$) и коэффициенте мощности, равном 1, а также при

токе, равном , соответственно $0.1I_{\text{ном}}$ ($0.2I_{\text{ном}}$), и коэффициенте мощности, равном 0.5;

- b) для трехфазного счетчика из проведения трех измерений при токе, равном , соответственно ${}^{0,05I}_{\text{ном}}$ (${}^{0,10I}_{\text{ном}}$), и коэффициенте мощности, равном единице, после каждого из которых присоединения к цепям тока и к цепям напряжения переключают, создавая сдвиг фаз на 120° , но без изменения порядка следования фаз. Наибольшую разность между значениями каждой из погрешностей, определенных таким образом, и их средним значением принимают за значение изменения погрешности.
- е) Требования к испытательной аппаратуре должны соответствовать [3].

Соотношение пределов допускаемых основных погрешностей эталонных средств измерений и поверяемых счетчиков должно быть не более 1/4.

f) У счетчика с барабанным счетным механизмом должен вращаться только барабан, соответствующий младшему разряду.

8.6 Интерпретация результатов испытаний

Из-за недостоверности измерений и других причин, оказывающих влияние на результаты измерений, некоторые результаты испытаний могут оказаться вне допустимых пределов, приведенных в таблицах 6 и 7. Однако если при перемещении оси абсцисс параллельно самой себе на значение, не превышающее значения, установленного в таблице 12, все результаты испытаний приходят в соответствие с пределами, установленными в таблицах 6 и 7, то счетчик считают годным.

Таблица 12 - Интерпретация результатов испытаний

Класс точности счетчика	0,5	1	2
Допускаемое перемещение оси абсцисс, %	0,3	0,5	1,0

9 Регулировка

Как правило, счетчики должны иметь органы регулировки. По соглашению между заказчиком и изготовителем последний может производить счетчики без возможности дальнейшей регулировки.

Органы регулировки должны обеспечивать в отрегулированном счетчике изменение частоты вращения подвижной части в пределах, приведенных в таблице 13.

Таблица 13 - Минимальный диапазон регулировки

Средство регулирования или	Значение тока	Коэффициент мощности	Предел регулирования частоты вращения ротора, %, не менее, для счетчиков классов		
условие				точности	
			0,5	1	2
Тормозной элемент	$0,50I_{\mathtt{maxc}}$	1,0	±2,0	±2,0	±4,0
					от минус 6,0
					∂o +4,0
Малая нагрузка	0,05 <i>I</i> ₆		±2,0; ±4,0	±2,0; ±4,0	±4,0
	0,05I _{ном}		±4,0	±4,0	±4,0
Индуктивная нагрузка	0,50 <i>I</i> _{maxc}	0,5 (при	±1,0	±1,0	-
		индуктивной			
		нагрузке)			
	0,501 _{HOM} .		±1,0	±1,0	-
	0,50I _{maxc}		-	-	±1,0

Примечание - Для многофазных счетчиков проверка диапазона регулировки индуктивной нагрузки должна быть выполнена для каждого вращающего элемента в момент, когда в цепи тока каждого элемента имеет место половина основного тока с запаздыванием 60° относительно напряжения на клеммах этого элемента, все цепи напряжения на вращающих элементах, несущих симметричное многофазное напряжение, имеют среднеквадратическое значение, равное номинальному напряжению, с порядком следования фаз согласно схеме подключений.

Испытания следует проводить при условиях, указанных в 8.5.

10 Дополнительные требования

Дополнительно к <u>ГОСТ 31818.11</u> (раздел 9) счетчики должны удовлетворять следующим требованиям.

10.1 Требования безопасности

^{*} Наименование раздела 10 в бумажном оригинале выделено курсивом. - Примечание изготовителя базы данных.

10.1.1 Заземление цоколя счетчика, предназначенного для эксплуатации в условиях тропического климата, следует выполнять по <u>ГОСТ 15151</u>.

Требования к зажимам заземления и место расположения их для счетчиков всех исполнений - по <u>ГОСТ 15151</u>.

- 10.1.2 Эквивалентный (по энергии) уровень звука, производимого работающим однофазным счетчиком класса точности 2 на расстоянии 1 м от него, не должен превышать 27 дБА.
- 10.2 Конструкция счетчика должна обеспечивать возможность извлечения из него счетного механизма, подвижной части и опор без изменения взаимного расположения других частей счетчика.

10.3 Гарантии изготовителя

- 10.3.1 Изготовитель гарантирует соответствие счетчиков всем требованиям настоящего стандарта и технических условий на счетчики конкретного типа государств, упомянутых в предисловии как проголосовавшие за принятие настоящего стандарта, при соблюдении условий эксплуатации, транспортирования и хранения.
- 10.3.2 Гарантийный срок хранения 6 мес с даты изготовления счетчиков, гарантийный срок эксплуатации 24 мес со дня ввода счетчиков в эксплуатацию или со дня продажи через розничную торговую сеть.

Приложение ДА (справочное). Сведения о соответствии межгосударственных стандартов ссылочным международным стандартам

Приложение ДА (справочное)

Таблица ДА.1

Обозначение и наименование	Степень	Обозначение и наименование соответствующего
ссылочного международного	соответствия	межгосударственного стандарта
стандарта		
IEC 60514:1975 Счетчики	NEQ	ГОСТ 25990-83 Счетчики электрические активной
электроэнергии переменного тока		энергии класса точности 2,0. Приемочный
класса 2. Приемочный контроль		контроль
IEC 62053-11:2003	MOD	<u>ΓΟCT 31818.11-2012</u> (IEC 62053:2003)
Аппаратура для измерения		Аппаратура для измерения электрической энергии
электрической энергии (переменный		переменного тока. Общие требования. Испытания
ток). Общие требования. Испытания		и условия испытаний. Часть 11. Счетчики
и условия испытаний. Часть 11.		электрической энергии
Счетчики электрической энергии		

Примечание - В настоящей таблице использованы следующие условные обозначения степени соответствия стандартов:

MOD - модифицированные стандарты;

NEQ - неэквивалентные стандарты.

Библиография

[1] IEC 62059-11:2002	Electricity metering equipment (a.c.) - Dependability - Part 11: General concepts
	(Аппаратура для измерения электрической энергии (переменный ток).
	Надежность. Часть 11. Общие положения)
[2] IEC 62059-21:2002	Electricity metering equipment (a.c.) - Dependability - Part 21: Collection of
	meter dependability data from the field (Аппаратура для измерения
	электрической энергии (переменный ток). Надежность. Часть 21. Сбор
	данных о надежности счетчика в условиях эксплуатации)
[3] IEC 60736:1982	Testing equipment for electrical energy meters (Испытательная аппаратура для
	счетчиков электрической энергии)