Документ: Запрос    [ 0 позиций ]

Описание параметра "Марка кабельного изделия (без категории пож.опасности)"

Сравнение неизолированных проводов для ВЛ с СИП

По сравнению с традиционными ВЛ с неизолированными проводами (ВЛН) ВЛИ до 1 кВ имеет ряд преимуществ:

  • строительство ВЛИ возможно без специальной подготовки территории (трассы), отсутствие необходимости в вырубке просеки перед монтажом;
  • простота конструктивного исполнения опор (отсутствие траверс и изоляторов);
  • применение для ВЛИ серийно выпускаемых стоек, отвечающих требованиям по механической прочности для соответствующих климатических условий;
  • применение на ВЛИ стоек меньшей высоты, а также уменьшения безопасных расстояний до зданий и других инженерных сооружений;
  • увеличение длины пролета до 60м.;
  • малый риск коротких замыканий (КЗ) между нулевой несущей и токопроводящими жилами;
  • повышение надежности в зонах интенсивного образования гололеда и налипания мокрого снега;
  • безопасная работа вблизи ВЛИ до 1 кВ;
  • возможность проводить техническое обслуживание и ремонт ВЛИ под напряжением, без отключения потребителей;
  • возможность прокладки СИП по фасадам зданий, что может исключить установку части опор;
  • простота монтажных работ и, соответственно, уменьшение сроков строительства;
  • сокращение объемов и времени аварийно-восстановительных работ;
  • резкое снижение (более 80%) эксплуатационных затрат. Это обуславливается высокой надежностью и бесперебойностью электроснабжения потребителей;
  • высокая механическая прочность жил и, соответственно, меньшая вероятность их обрыва;
  • снижение потерь напряжения вследствие малого реактивного сопротивления СИП (0,1 Ом/км по сравнению с 0,35 Ом/км для неизолированных проводов);
  • использование СИП на ВЛИ снижает вероятность хищения электроэнергии, так как изолированные, скрученные между собой жилы исключают самовольное подключение к линии путем выполнения наброса на провода;
  • значительное снижение числа случаев вандализма и воровства.

Области применения и типы СИП

СИП предназначен для сооружения ВЛИ до 1 кВ с подвеской проводов на опорах ВЛ, фасадах зданий и сооружениях.
СИП рекомендуется к использованию во всех климатических районах по ветровой и гололедной нагрузке при температуре окружающей среды в диапазоне температур окружающего воздуха -60...+60оС.
СИП используется также при сооружении ВЛ с совместной подвеской проводов ВЛ 6—20 кВ, освещения и линий проводной связи.

В соответствии с новыми требованиями, предъявляемыми к развитию линий электропередач, разработан национальный стандарт России ГОСТ Р 52373-2005, на самонесущие изолированные и защищенные провода, напряжением 0,4 и 6-35 кВ, который вступил в действие с 01.07.2006 г.

Стандартом определены основные типы и конструктивное исполнение СИП для сооружения магистральных линий электропередачи:

  • СИП-1 — вокруг неизолированной несущей нулевой жилы скручены изолированные основные токопроводящие жилы. Несущая нулевая жила выполнена из алюминиевого сплава АВЕ высокой прочности. Изоляция выполнена из светостабилизированного сшитого полиэтилена.
  • СИП-2 — вокруг изолированной нулевой несущей жилы скручены изолированные основные токопроводящие жилы. Несущая нулевая жила выполнена из алюминиевого сплава АВЕ высокой прочности. Изоляция выполнена из светостабилизированного сшитого полиэтилена.
  • СИП-4 — без несущей жилы представляет собой скрученные в жгут основные токопроводящие и нулевая жилы, покрытые изоляцией из светостабилизированного сшитого полиэтилена.

ГОСТ Р 52373-2005 допускает применение СИП-4 только на ввода в дом или прокладку по фасадам зданий (сечением: 2х16, 2х25, 4х16, 4х25). На магистральном участке ВЛ 0,4 кВ необходимо использовать только СИП с изолированной (СИП-2) или с неизолированной (СИП-1) несущей нулевой жилой из алюминиевого сплава. Применение нулевой несущей жилы со стальным сердечником, также не допускается.

Наиболее распространенные сечения СИП и сравнение их параметров приведены в таблице.

Конструкция СИП СИП-1 СИП-2 СИП-3 СИП-4
 

Структура СИП

3 изолированных термопластичным
сшитым полиэтиленом
Изолированные основные токопроводящие жилы + 1 неизолированная несущая нулевая жила из алюминиевого сплава

3 изолированных термопластичным
сшитым полиэтиленом
изолированные основные токопроводящие жилы + 1 изолированная несущая нулевая жила из алюминиевого сплава

1 изолированная несущая жила с изоляцией из сшитого светостабилизированного полиэтилена 4 изолированных алюминиевых жилы без нулевой несущей жилы из сплава

Сечения СИП

3х50+70
3х70+95
3х95+95
3х120+95
3х150+95

3х50+54,6
3х70+54,6
3х95+70
3х120+70
3х150+95

1х35
1х50
1х70
1х95
1х...
2х16
2х25
4х16
4х25
     

Распределение механических нагрузок между нулевой и токопроводящими жилами

Отсутствует механическая нагрузка
на токопроводящие жилы

Отсутствует механическая нагрузка
на токопроводящие жилы

  Не симметричное распределение механических нагрузок между нулевой и токопроводящими жилами. Высокая механическая нагрузка на изоляцию всех жил.

Ток короткого замыкания (односекундный), кА, для СИП 70мм2

5,9

4,5

  3,8

Длительно допустимая температура нагрева, оC для СИП 70мм2

70/90

90

  80

Максимально допустимая температура нагрева при к.з. оC

135 (160)/250

250

  130

Риск короткого замыкания между нулевой и токопроводящими жилами

Средний

Малый

Малый Малый

Устойчивость к атмосферным перенапряжениям

Средняя

Высокая

Высокая Высокая

Трудоемкость выполнения ответвлений

Малая

Малая

  Средняя

Возможность прокладки по стенам зданий

Нет

Есть

Нет Есть

Антикоррозионные свойства

Средние

Высокие

Высокие Высокие

Возможность соединения СИП в пролете

Есть, надежное герметичное соединение выполняется при помощи соединительных зажимов.

Есть, надежное герметичное соединение выполняется при помощи соединительных зажимов.

  Нет, соединение СИП
осуществляется в шлейфах на опорах.

Стоимость линейной арматуры выполненной по Европейскому стандарту CENELEC

Стоимость ниже чем для СИП–4, но немного выше, чем для СИП–2.

Стоимость ниже, чем для СИП–4 и СИП–1. Арматура для СИП–2
Наиболее технологичная
и не требует применения специального инструмента для монтажа.

  Стоимость выше на 30-40% по сравнению с арматурой для СИП–1
и СИП–2. Также требуется больше арматуры из-за невозможности
Соединения СИП–4 в пролете.

Трудоемкость монтажа

Легко и просто монтировать, так как вся анкерная и подвесная арматура крепит одну несущую жилу. Требуется динамометрический ключ.

Легко и просто монтировать, так как
вся анкерная и подвесная арматура крепит одну несущую жилу.

  Сложнее, чем для СИП–1 и СИП–2. Труднее определить нулевую жилу. Требуется динамометрический ключ

Отличия в монтаже разных конструкций СИП

Монтаж различных конструкций СИП отличается в части выбора анкерных и поддерживающих зажимов, т.е. тех изделий, которые несут на себе механическую нагрузку.
Ниже приведены особенности монтажа разных систем:

СИП–1 — так как на нулевой жиле возможно возникновение потенциала, монтаж по фасадам зданий СИП с неизолированной нулевой жилой не допускается.

СИП–2 — монтаж провода СИП с изолированной несущей нулевой жилой значительно проще, чем СИП 4, так как вся анкерная и подвесная арматура крепит одну несущую жилу. Легко определяется нулевая жила. Не требуется применение динамометрического ключа.

СИП–4 - невозможность соединения СИП–4 в пролетах. Соединение осуществляется в шлейфах на опорах, после чего остаются лишние куски СИП, которым в дальнейшем трудно найти применение.
Сложность разведения жил в напряженном состоянии. Усложняет монтаж анкерных, ответвительных и соединительных зажимов. Максимальные пролеты для 2х16, 4х16, 2х25 4х25 до 40 м, что накладывает ограничение на их использование.
Возникают сложности в определении нулевой несущей и токопроводящих жил, т.к. все жилы имеют одинаковые сечения и выполнены из алюминия.
В арматуре для СИП–4 не предусмотрены элементы, которые служат для механической защиты магистральной линии от обрывов.
Для монтажа анкерной и подвесной арматуры требуется динамометрический ключ и специальный монтажный зажим для натяжения СИП.
Поскольку распределение электрических нагрузок на жилы не симметрично и меняется во времени, одна жила нагревается больше, чем другая, большая механическая нагрузка переходит на менее нагретую жилу, что может привести к вытягиванию жилы.

Надежность конструкции

Для эксплуатирующей организации очень важно сохранение магистральной линии, т.е. СИП, опор, арматуры. При значительной механической перегрузке магистрали СИП в первую очередь должны разрушаться отдельные элементы в анкерной и подвесной арматуре, защищая от разрушения провода и опоры. Проще заменить отдельные элементы в арматуре, чем восстановить СИП и опоры.

Многообразие конструкций СИП приводит к увеличению перечня необходимого инструмента, анкерной и подвесной арматуры, что усложняет проектирование, строительство и эксплуатацию электрических сетей.
Конструкция СИП–2 надежнее в эксплуатации чем СИП-1 и СИП-4, так как всю механическую нагрузку несет на себе изолированная несущая нулевая жила из сплава АВЕ высокой прочности, алюминиевые токопроводящие жилы не подвергаются механическим нагрузкам.

Конструктивное исполнение СИП-2

СИП–2 независимо от назначения, количества и сечения токопроводящих жил изготавливается с несущей нулевой изолированной жилой из алюминиевого сплава.
СИП–2 состоит из изолированной несущей нулевой жилы, вокруг которой скручены три основные токопроводящие жилы и при необходимости, вспомогательные токопроводящие жилы, а также контрольные провода.
Изолирующая оболочка жил устойчива к воздействиям окружающей среды и выполнена из сшитого полиэтилена (СПЭ) и содержащего в своей структуре газовую сажу для обеспечения длительного срока эксплуатации.
Токопроводящие жилы СИП–2 выполнены из алюминия прошедшего специальную обработку, а нулевая несущая жила — из алюминиевого сплава.
Маркировка проводов СИП–2 произведена путем нанесения на изоляцию жил по всей длине соответствующих знаков.
СИП–2 характеризуется следующими основными свойствами:

  • стойкость к ультрафиолетовому излучению, воздействию озона и влаги;
  • устойчивость к воздействию внешних атмосферных условий (образованию гололеда, различным осадкам, атмосферному электричеству и т.п.);
  • сохранение механической прочности и электрических параметров в температурном интервале -60...+85оС.
  • Разрушающее механическое напряжение алюминиевой токопроводящей жилы составляет 120 Н/мм2, а несущей нулевой жилы, выполненной из термоупрочненного сплава АВЕ — 295 Н/мм2.

Конструктивное исполнение СИП-3

Провод марки СИП-3 предназначен для применения в воздушных линиях электропередачи на переменное напряжение до 20 кВ номинальной частотой 50 Гц в районах с умеренным, холодным и тропическим климатом.

Провод — одножильный. Жила скручивается из проволок алюминиевого сплава AlMgSi с уплотнением.
Изоляция жилы — светостабилизированный сшитый полиэтилен.